ISMIP6 related papers are welcomed to ask for publication number. When your manuscript is submitted or accepted, please email ismip6@gmail.com, so that we can assign you a contribution number, which will go in the acknowledgements as “This is ISMIP6 contribution No X” and listed below.
(1) Nowicki et al. (2016) present the framework for the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), including a protocol for coupled ice sheet-climate model simulations and standalone ice sheet models as part of CMIP6:
Nowicki, S. M., A. Payne, E. Larour, et al. 2016. “Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6.” Geoscientific Model Development 9 (12): 4521-4545 https://doi.org/10.5194/gmd-9-4521-2016
(2) Goelzer et al. (2018) present an analysis of the initMIP-Greenland intercomparison, an effort that investigates the impact of initialization methods on standalone ice sheet projections:
Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A., Aschwanden, A., Calov, R., Gagliardini, O., Gillet-Chaulet, F., Golledge, N. R., Gregory, J., Greve, R., Humbert, A., Huybrechts, P., Kennedy, J. H., Larour, E., Lipscomb, W. H., Le clec’h, S., Lee, V., Morlighem, M., Pattyn, F., Payne, A. J., Rodehacke, C., Rückamp, M., Saito, F., Schlegel, Seroussi, H., Shepherd, A., Sun, S., van de Wal, R., and Ziemen, F. A.: Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison, The Cryosphere, 12, 1433-1460, https://doi.org/10.5194/tc-12-1433-2018, 2018.
initMIP-Greenland model simulations can be found:
Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A., Aschwanden, A., Calov, R., Gagliardini, O., Gillet-Chaulet, F., Golledge, N. R., Gregory, J., Greve, R., Humbert, A., Huybrechts, P., Kennedy, J. H., Larour, E., Lipscomb, Le clec’h, S., Lee, V., Morlighem, M., Pattyn, F., Payne, A. J., Rodehacke, C., Rückamp, M., Saito, F., Schlegel, Seroussi, H., Shepherd, A., Sun, S., van de Wal, R., and Ziemen, F. A.: Results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison, https://doi.org/10.5281/zenodo.1173088, 2018.
(3) Seroussi et al. (2019) present an analysis of the initMIP-Antarctica intercomparison, an effort that investigates the impact of initialization methods on standalone ice sheet projections:
Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., Cornford, S., Dumas, C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M. J., Humbert, A., Huybrechts, P., Kleiner, T., Larour, E., Leguy, G., Lipscomb, W. H., Lowry, D., Mengel, M., Morlighem, M., Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A., Reerink, T. J., Reese, R., Rodehacke, C. B., Schlegel, N.-J., Shepherd, A., Sun, S., Sutter, J., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., and Zhang, T.: initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6, The Cryosphere, 13, 1441-1471, https://doi.org/10.5194/tc-13-1441-2019, 2019.
initMIP-Antarctica model simulations can be found on:
Seroussi, H.’, Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., Cornford, S., Dumas, C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M. J., Humbert, A., Huybrechts, P., Kleiner, T., Larour, E., Leguy, G., Lipscomb, W. H., Lowry, D., Mengel, M., Morlighem, M., Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A., Reerink, T. J., Reese, R., Rodehacke, C. B., Schlegel, N.-J., Shepherd, A., Sun, S., Sutter, J., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., and Zhang, T.: initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6, https://doi.org/10.5281/zenodo.2651652
(4) Slater et al. (2019) present the submarine melting oceanic forcing for the Greenland projection:
Donald Slater, Fiamma Straneo, Denis Felikson, Chris Little, Heiko Goelzer, Xavier Fettweis, and James Holte: Estimating Greenland tidewater glacier retreat driven by submarine melting, The Cryosphere, 13, 2489–2509, https://doi.org/10.5194/tc-13-2489-2019, 2019.
(5) Barthel et al (2020) present a framework for selecting climate models to be used in the development of atmospheric and oceanic forcing for ice sheet model and applies it to the CMIP5 model ensemble
Alice Barthel, Cecile Agosta, Christopher M. Little, Tore Hatterman, Nicolas C. Jourdain, Heiko Goelzer, Sophie Nowicki, Helene Seroussi, Fiammetta Straneo, and Thomas J. Bracegirdle, CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, 2020.
(6) Slater et al. (2020) present two different methods for implementing oceanic forcing for the Greenland projection:
Donald A. Slater, Denis Felikson, Fiamma Straneo, Heiko Goelzer, Christopher M. Little, Mathieu Morlighem, Xavier Fettweis, and Sophie Nowicki, Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution , The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020, 2020.
(7) Goelzer et al (2020) present a method for remapping of Greenland surface mass balance which can be used when the ice sheet spatial extent and elevation differs significantly from the observed ice sheet (a result of initialization):
Goelzer, H., Noël, B. P. Y., Edwards, T. L., Fettweis, X., Gregory, J. M., Lipscomb, W. H., van de Wal, R. S. W., and van den Broeke, M. R.: Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections, The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, 2020
(8) Jourdain et al (2020) present the oceanic forcing for the Antarctic ice sheet:
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Helene Seroussi, Christopher M. Little, and Sophie Nowicki, 2020: A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections, The Cryosphere, https://doi.org/10.5194/tc-14-3111-2020.
(9) Nowicki et al. (2020) present the overall framework for the ISMIP6 standalone ice sheet projections and all the forcing (atmospheric and oceanic) in the same place
Nowicki, S., Goelzer, H., Seroussi, H., Payne, A. J., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Alexander, P., Asay-Davis, X. S., Barthel, A., Bracegirdle, T. J., Cullather, R., Felikson, D., Fettweis, X., Gregory, J. M., Hattermann, T., Jourdain, N. C., Kuipers Munneke, P., Larour, E., Little, C. M., Morlighem, M., Nias, I., Shepherd, A., Simon, E., Slater, D., Smith, R. S., Straneo, F., Trusel, L. D., van den Broeke, M. R., and van de Wal, R.: Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models, The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, 2020
(10) Goelzer et al. (2020) present the projections for the Greenland ice sheets driven by CMIP5 models
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec’h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-J., Slater, D., Smith, R., Straneo, F., Tarasov, L., van de Wal, R., and van den Broeke, M. 2020: The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, https://doi.org/10.5194/tc-14-3071-2020.
(11) Seroussi et al. (2020) present the projections for the Antarctic ice sheets driven by CMIP5 models
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Gladstone, R., Golledge, N., Gregory, J. M., Greve, R., Hatterman, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T. 2020: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, https://doi.org/10.5194/tc-14-3033-2020.
(12) Payne et al. (2021) present the projections for the Greenland and Antarctic ice sheet driven by CMIP6 models. These CMIP6 models were chosen based on their availability.
Payne, A. J., Nowicki, S., Abe‐Ouchi, A., Agosta, C., Alexander, P., Albrecht, T., … & Zwinger, T. (2021). Future sea level change under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets. Geophysical Research Letters, e2020GL091741, https://doi.org/10.1029/2020GL091741.
(13) Edwards et al. (2021) present the sea level contribution of land ice based on emulation of ISMIP6 projections:
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H., … & Zwinger, T. (2021). Projected land ice contributions to twenty-first-century sea level rise. Nature, 593(7857), 74-82, https://doi.org/10.1038/s41586-021-03302-y.
(14) Sun et al. (2020) present the impact of sudden and sustained Antarctic ice shelf collapse resulting from the ABUMIP simulations
S. Sun, F. Pattyn, E. Simon, T. Albrecht, S. Cornford, R. Calov, C. Dumas, F. Gillet-Chaulet, H. Goelzer, N. Golledge, R. Greve, M. Hoffman, A. Humbert, E. Kazmierczak, T. Kleiner, G. Leguy, W. Lipscomb, D. Martin, M. Morlighem, S. Nowicki, D. Pollard, S. Price, A. Quiquet, H. Seroussi, T. Schlemm, J. Sutter, R. van de Wal, R. Winkelmann, and T. Zhang, 2020. Antarctic ice sheet response to sudden and sustained ice shelf collapse (ABUMIP), Journal of Glaciology, https://doi.org/10.1017/jog.2020.67
(15) Reese et al. (2020) present simulations from their group and the impact of different choices for historical simulations as well as a comparison with LARMIP-2 experiments
Reese, R., Levermann, A., Albrecht, T., Seroussi, H., and Winkelmann, R., 2020: The role of history and strength of the oceanic forcing in sea-level projections from Antarctica with the Parallel Ice Sheet Model, The Cryosphere, https://doi.org/10.5194/tc-14-3097-2020.
(16) Lipscomb et al. (2021) present an Antarctica study with CESM:
Lipscomb, W. H., Leguy, G. R., Jourdain, N. C., Asay-Davis, X. S., Seroussi, H., and Nowicki, S.: ISMIP6 projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model, The Cryosphere, 15, 633–661, https://doi.org/10.5194/tc-15-633-2021, 2021
(17) Rückamp et al. (2020) present the impact of resolution dependence on projection of the Greenland Ice sheet with ISSM-AWI:
Rückamp, M., Goelzer, H., and Humbert, A. (2020) Sensitivity of Greenland ice sheet projections to spatial resolution in higher-order simulations: the AWI contribution to ISMIP6-Greenland using ISSM, The Cryosphere, 14, 3309–3327, https://doi.org/10.5194/tc-14-3309-2020
(18) Muntjewerf et al. (2020) present Greenland projection under increased CO2 with coupled CESM2.1-CISM2.1:
Muntjewerf, L., R. Sellevold, M. Vizcaino, C. Ernani da Silva, M. Petrini, K. Thayer-Calder, M. D. W. Scherrenberg, S. L. Bradley, J. G. Fyke, W. H. Lipscomb, M. Löfverström, and W. J. Sacks, Accelerated Greenland Ice Sheet mass loss under high greenhouse gas forcing as simulated by the coupled CESM2.1-CISM2.1, J. Adv. Model. Earth Syst, 12, e2019MS002031. https://doi.org/10.1029/2019MS002031.
(19) Muntjewerf et al. (2020) present ISMIP6 Greenland projection under SSP8.5 with coupled CESM2.1-CISM2.1:
Muntjewerf, L., M. Petrini, M. Vizcaíno, C. Ernani da Silva, R. Sellevold, M. D. W. Scherrenberg, K. Thayer-Calder, S. L. Bradley, J. T. M. Lenaerts, W. H. Lipscomb, and M. Löfverström (2020), Greenland Ice Sheet contribution to 21st century sea level rise as simulated by the coupled CESM2.1-CISM2.1, Geophysical Research Letters, 47, e2019GL086836. https://doi.org/10.1029/2019GL086836
(20) ISMIP6-Greenland projections with SICOPOLIS
K. Goto-Azuma, T. Homma, T. Saruya, F. Nakazawa, Y. Komuro, N. Nagatsuka, M. Hirabayashi, Y. Kondo, M. Koike, T. Aoki, R. Greve and J. Okuno (2020) Studies on the variability of the Greenland Ice Sheet and climate, in press, Polar Science, https://doi.org/10.1016/j.polar.2020.100557
(21) Greve et al. (2020) present the model-specific methods, set-up and the main results of the future projections for the Antarctic ice sheet carried out with the SICOPOLIS model, driven by CMIP5 and CMIP6 climate models.
Greve, R., Calov, R., Obase, T., Saito, F., Tsutaki, S. and Abe-Ouchi, A. 2020. ISMIP6 future projections for the Antarctic ice sheet with the model SICOPOLIS. Technical report, Zenodo, http://doi.org/10.5281/zenodo.3971232
(22) Greve et al. (2020) present the model-specific methods, set-up and the main results of the future projections for the Greenland ice sheet carried out with the SICOPOLIS model, driven by CMIP5 and CMIP6 climate models.
Greve, R., Chambers, C. and Calov, R. 2020. ISMIP6 future projections for the Greenland ice sheet with the model SICOPOLIS. Technical report, Zenodo, http://doi.org/10.5281/zenodo.3971251
(23) Quiquet and Dumas (2021) present the model-specific methods, set-up and the main results of the future projections for the Greenland ice sheet carried out with the GRISLI model, driven by CMIP5 and CMIP6 climate models.
Quiquet, A. and Dumas, C.: The GRISLI-LSCE contribution to ISMIP6, Part 1: projections of the Greenland ice sheet evolution by the end of the 21st century, The Cryosphere, 15, 1015–1030, https://doi.org/10.5194/tc-15-1015-2021, 2021.
(24) Quiquet and Dumas (2021) present the model-specific methods, set-up and the main results of the future projections for the Antarctic ice sheet carried out with the GRISLI model, driven by CMIP5 and CMIP6 climate models.
Quiquet, A. and Dumas, C.: The GRISLI-LSCE contribution to ISMIP6, Part 2: projections of the Antarctic ice sheet evolution by the end of the 21st century, The Cryosphere, 15, 1031–1052, https://doi.org/10.5194/tc-15-1031-2021, 2021.
(25) Lowry et al. (2021) present extended Antarctic Ice Sheet projections to 2300 using PISM and a statistical emulator.
Lowry, D.P., Krapp, M., Golledge, N.R. and Alevropoulos-Borrill, A.: The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Commun Earth Environ 2, 221, https://doi.org/10.1038/s43247-021-00289-2, 2021
(26) Chambers et al. (2022) present ice sheet simulations of Antarctica extending to year 3000 to investigate the long-term impact of 21st century warming.
Chambers, C., Greve, R., Obase, T., Saito, F., and Abe-Ouchi, A.: Mass loss of the Antarctic ice sheet until the year 3000 under a sustained late-21st century climate, Journal of Glaciology, 68 (269), 605-617, https://doi.org/10.1017/jog.2021.124, 2022.
(27) Greve and Chambers (2022) present ice sheet simulations of Greenland extending to year 3000 to investigate the long-term impact of 21st century warming.
Greve, R., & Chambers, C.: Mass loss of the Greenland ice sheet until the year 3000 under a sustained late-21st-century climate. Journal of Glaciology, 68(269), 618-624. https://doi.org/10.1017/jog.2022.9, 2022.
(28) Rohmer et al. (2022) use a local attribution approach to quantify the influence of particular modelling decisions on the ISMIP6 Greenland ensemble
Rohmer, J., Thieblemont, R., Le Cozannet, G., Goelzer, H., and Durand, G.: Improving interpretation of sea-level projections through a machine-learning-based local explanation approach, The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, 2022.
(29) Greve et al. (2023) present an ensemble of climate forcings for Antarctica until the year 2300 based on original ISMIP6 forcings until 2100
Greve, R., Chambers, C., Obase, T., Saito, F., and Abe-Ouchi, A.: Future Projections for the Antarctic ice sheet until the year 2300 with a climate index method. Journal of Glaciology, Journal of Glaciology, 1-11. https://doi.org/10.1017/jog.2023.41, 2023
(30) Roffman et al. (2023) present local sea level change due to gravitational, Earth rotational and deformational effect from some of the ISMIP6 Antarctic ice sheet model simulations
Roffman J., Gomez N., Yousefi M., Han H.K., and Nowicki, S.: Spatial and temporal variability of 21st century sea level changes. Geophysical Journal International, 235, 1, 342–352, https://doi.org/10.1093/gji/ggad170, 2023
(31) Seroussi et al. (2023) explores uncertainty and vulnerability of Antarctic glaciers
Seroussi, H., Verjans, V., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hatterman, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., Van Katwyk, P., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: Insights on the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty, 17, 5197-5217, The Cryosphere, https://doi.org/10.5194/tc-170-5197-2023, 2023
(32) Van Katwyk et al. (2023) explores uncertainty and vulnerability of Antarctic glaciers
Van Katwyk, P., Fox-Kemper, B., Seroussi, H., Nowicki, S., and Bergen, K.: A variational LSTM emulator of sea level contribution from the Antarctic ice sheet, Journal of Advances in Modeling Earth Systems, 15, 12, e2023MS003899, https://doi.org/10.1029/2023MS003899, 2023
(33) Seroussi et al. (2024) explores uncertainty of the Antarctic ice sheet in the projections to 2300.
Seroussi, H., Pelle, T., Lipscomb, W. H., Abe-Ouchi, A., Albrecht, T., Alvarez-Solas, J., et al. (2024). Evolution of the Antarctic Ice Sheet over the next three centuries from an ISMIP6 model ensemble. Earth’s Future, 12, e2024EF004561, https://doi.org/10.1029/2024EF004561
(34) O’Neill et al. (2025) builds on the ISMIP6 protocol to more comprehensively sample uncertainties in future climate, ice shelf sensitivity to ocean melting, and their interactions.
O’Neill, J. F., Edwards, T. L., Martin, D. F., Shafer, C., Cornford, S. L., Seroussi, H. L., Nowicki, S., Adhikari, M., and Gregoire, L. J. (2025) ISMIP6-based Antarctic projections to 2100: simulations with the BISICLES ice sheet model, The Cryosphere, 19, 541–563, https://doi.org/10.5194/tc-19-541-2025.
(35) Luo and Nowicki (2025) builds on the ISMIP6 Greenland projections to explore model weighting and their impact on projections.
Luo, X. and Nowicki S. (2025) Model weighting for ISMIP6-Greenland based on observations and similarity among models, Annals of Glaciology, in press
(36) Beckmann et al. (2025) assess contributing factors to uncertainties in projections of basal melt and sea level rise using the Antarctic 2300 ensemble
Beckmann, J., Reese, R., McCormack, F. and others (2025) Disentangling uncertainty in ISMIP6 Antarctic sub-shelf melting and 2300 sea level rise projections, under review